From nuclei to stars

Nucleosynthesis processes in the Universe: from Big-Bang to stars

Nicolas de Séréville (nicolas.de-sereville@ijclab.in2p3.fr)
Laboratoire de Physique des 2 Infinis Irène Joliot Curie
Université Paris Saclay
Outline

Lecture 1: Introduction to nuclear astrophysics

Lecture 2: Nucleosynthesis processes in the Universe

1. A little bit of history
2. Big-Bang nucleosynthesis
3. Cosmic ray nucleosynthesis
4. Stellar nucleosynthesis
 • Hydrogen burning: p-p chains and CNO cycles
 • Helium burning
 • Advanced burning stages: C, Ne, O and Si burning
 • Explosive nucleosynthesis
 • Nucleosynthesis beyond iron: s- and r-process
5. Back to the Hertzsprung-Russel diagram

Lecture 3: Cross-sections and thermonuclear reaction rates

Lecture 4: Experimental approaches in nuclear astrophysics
1. A little bit of history

When and where?
Important dates

- 1920 – Aston: mass of the helium atom is slightly less than four times the mass of the hydrogen
- 1928 – Eddington: suggests that Aston’s discovery would explain the energy generation in Sun
- 1928 – Gamow, Condon & Gourney: 1st calculation of the quantum tunneling probability
- 1929 – Atkinson & Houtermans: suggest that Gamow’s results may explain energy generation

- 1932 – Cockcroft & Walton: 1st induced nuclear reaction $^7\text{Li}(p,\alpha)\alpha \rightarrow \text{pp chain}$
- 1934 – Lauritsen & Crane: 10 min radioactivity produced $^{12}\text{C}(p,\gamma)^{13}\text{N} \rightarrow \text{CNO cycle}$

- 1936 – Atkinson, Bethe & Critchfield: p+p reactions give correct energy generation in Sun
- 1936 – von Weizsaker & Bethe: energy generation in stars produced via the CNO cycle

- 1957 – Burbridge, Burbridge, Fowler & Hoyle \textbf{Overview of nucleosynthesis processes}
- 1957 – Cameron

- 1968 – 1st detection of neutrinos emitted by the Sun core
- 1969 – 1st detection of ^{26}Al γ-ray decay in the Milky Way
- 1987 – γ-ray detection of ^{56}Co and ^{57}Co decays in supernova SN 1987A
- 2013 – observational evidences of heavy nuclei nucleosynthesis in the coalescence of a binary system of two neutron stars (GRB 130603B)
- 2017 – Observational confirmation of heavy nuclei nucleosynthesis in a binary neutron star merger (GW 170817)
Two views….

Primordial nucleosynthesis

« All the elements were formed just after Big-Bang »
Phys. Rev. 73. (1948) 803

Almost true for D, He and a part of 7Li
BUT no stable isotopes with $A = 5$ and $A = 8$ (mass gap)

Stellar nucleosynthesis

« All elements are synthesized in stars through various processes »
Rev. Mod. Phys. 29 (1957) 547

History
Identified nucleosynthesis processes

- Primordial (Big-Bang) nucleosynthesis
- Hydrogen and Helium burning
- “e” process (iron peak)
- “x” process (LiBeB; “x” for unknown)
- “r” process (rapid neutron capture)
- “s” process (slow neutron capture)
- “p” process (proton rich)

Today

- “x” is identified as non-thermal nucleosynthesis (cosmic rays)
- Additional burning stages identified: C, Ne, O, Si
2. Big Bang nucleosynthesis

- 10^{-32} seconds: Cosmic inflation ends
- 10^{-6} seconds: Protons form
- 100 seconds: Deuterium, helium and lithium are synthesized
- 100 million years: First stars form
- 500 million years: Current record holder for earliest known galaxy
- 4 billion years: Star formation peaks
Observational pillars for Big-Bang model

• The expansion of the Universe
 Galaxies move away from each other and from us according to Hubble’s law: \(V = H_0 \times D \), where \(H_0 \approx 70 \text{ km/s/pc} \) is the Hubble “constant”

• The Cosmic Microwave Background radiation (CMB)
 Black body radiation at 2.7 K corresponding to the redshifted spectrum emitted when the Universe became transparent (Penzias & Wilson, 1965)

• Primordial nucleosynthesis (BBN) of light elements
 BBN reproduces the observed primordial abundances over a range of nine orders of magnitudes!
Nucleosynthesis (1)

• For $T > 10$ GK, the energy density is dominated by radiation (photons and neutrinos), and all weak, strong and electromagnetic processes established a thermal equilibrium

• $n \leftrightarrow p$ equilibrium driven by weak interactions:
 \[(1): \nu_e + n \leftrightarrow e^- + p \quad (2): \bar{\nu}_e + p \leftrightarrow e^+ + n \quad (3): n \leftrightarrow p + e^- + \bar{\nu}_e\]

\[
\frac{N_n}{N_p} = e^{-Q_{np}/kT} \quad Q_{np} = 1.29\,\text{MeV}
\]

• Equilibrium as long as the weak reaction rate \([(1) + (2)]\) are faster than the expansion rate, hence breaks out when:

\[
\Gamma_{n\leftrightarrow p} \sim H(t)
\]

• Decoupling and freezeout $t \approx 10$ s after Big-Bang when $T \approx 3$ GK and $N_n/N_p \approx 1/6$
Nucleosynthesis (2)

- After freezeout the dominant weak interaction is the decay of free neutrons to protons
 \[n \rightarrow p + e^- + \bar{\nu}_e \]

- Neutrons decay until \(T \) is low enough so that:
 \[n + p \rightarrow D + \gamma \]

 becomes faster than deuterium photodisintegration
 \[\gamma + D \rightarrow n + p \]

- This occurs at \(t \approx 200 \text{ s} \) (3 min) when \(T \approx 0.9 \text{ GK} \) and \(N_n/N_p \approx 1/7 \)

- Nucleosynthesis starts to produce essentially \(^4\text{He} \) together with traces of \(^3\text{He}, ^7\text{Li}, \ldots \)

\[N_n/N_p \approx 1/7 = 2/14 \quad \rightarrow \quad X(^4\text{He}) \approx 4 / (4 + 12) \approx 0.25 \]
The canonical BBN reaction network

- Standard BBN: no convection, no mixing, no diffusion, known physics
- The 12 reactions of standard BBN:

 \[
 \begin{align*}
 \bullet & \quad n \leftrightarrow p \quad \text{and} \quad \tau_n = 880 (4) \text{ s} \\
 \bullet & \quad p + n \rightarrow D + \gamma \\
 \bullet & \quad D + p \rightarrow ^3\text{He} + \gamma \\
 \bullet & \quad D + D \rightarrow ^3\text{He} + n \\
 \bullet & \quad D + D \rightarrow T + p \\
 \bullet & \quad T + D \rightarrow ^4\text{He} + n \\
 \bullet & \quad T + ^4\text{He} \rightarrow ^7\text{Li} + \gamma \\
 \bullet & \quad ^3\text{He} + n \rightarrow p + T \\
 \bullet & \quad ^3\text{He} + D \rightarrow p + ^4\text{He} \\
 \bullet & \quad ^3\text{He} + ^4\text{He} \rightarrow ^7\text{Be} + \gamma \\
 \bullet & \quad ^7\text{Li} + p \rightarrow ^4\text{He} + ^4\text{He} \\
 \bullet & \quad ^7\text{Be} + n \rightarrow ^7\text{Li} + p
 \end{align*}
 \]

Number of baryons per photon: \(\eta \equiv n_b / n_\gamma \)

Baryonic density of the Universe: \(\Omega_b h^2 = 3.65 \times 10^7 \eta \)
Predictions vs observations

Observations from a set of primitive objects when the Universe was young

- **D observations**: in remote cosmological clouds (i.e. at high redshift) on the line of sight of quasars
 \[\text{D}/\text{H} = (2.527 \pm 0.030) \times 10^{-5} \]

- **\(^4\)He observations**: in H II (ionized H) regions of blue compact galaxies
 \[\text{\(^4\)He}/\text{H} = 0.2449 \pm 0.0040 \]

- **\(^3\)He observations**: in HII regions of our Galaxy
 \[\text{\(^3\)He}/\text{H} = (1.1 \pm 0.2) \times 10^{-5} \]

- **\(^7\)Li observations**: at the surface of low metallicity stars in the halo of our Galaxy
 \[\text{\(^7\)Li}/\text{H} = 1.58^{+0.35}_{-0.28} \times 10^{-10} \]
Solutions to the 7Li problem?

Several possibilities are considered

- Astrophysical solution
- Nuclear physics solution
- Physics beyond the standard model
Primordial 7Li abundance measured in old metal poor halo dwarf stars

Spite plateau (Spite & Spite, 1982)
- $\text{Li/H} \approx 1.12 \times 10^{-10}$
- Very low dispersion

Spite plateau indicates that the bulk of the lithium is unrelated to galactic nucleosynthesis processes and thus is primordial

How reliable is Li abundance determination?
→ Systematic errors in the extraction of Li abundances due to the used atmosphere models?
→ unlikely Asplund and Lind 2010
Could atmospheric 7Li be depleted by rotationally induced mixing and/or diffusion?

- Lithium easily burned in stars (low binding energy) → 7Li(p,α)α for $T > 2.5$ MK
- Convection brings surface material to deeper layers → lithium burning

Not enough and not uniform 7Li destruction
- Metal poor halo stars have shallow convective zones than in solar metallicity stars
- Stars of different masses have different convective zone size → larger scatter around 7Li plateau should be observed
Nuclear solution to 7Li problem?

- 7Li produced by 7Be decay (EC) at high $\Omega_b \hbar^2$

- Main 7Be production mechanism: $^3\text{He}(^4\text{He},\gamma)^7\text{Be}$
 - Various measurements of the cross-section 10% uncertainty

- Main 7Be destruction mechanism: $^7\text{Be}(n,p)^7\text{Li}(p,\alpha)\alpha$
 - $^7\text{Be}(n,p)^7\text{Li}$ well known cross-section 1% uncertainty
 - $^7\text{Li}(p,\alpha)\alpha$ 6% uncertainty on cross-section

- Secondary destruction mechanisms $^7\text{Be}+d$, $^7\text{Be}+^3\text{He}$, $^7\text{Be}+^4\text{He}$…
 - all experimentally studied, and none can alleviate the 7Li problem

Nuclear physics is very unlikely to solve the 7Li problem

Any additional 7Be destruction would alleviate the 7Li problem
Physics beyond the standard model?

Idea: late time neutron injection

- enhance ^7Be destruction by $^7\text{Be}(n,p)^7\text{Li}(p,\alpha)\alpha$ reactions
- Alleviate the Li problem at the expense (harmless) Deuterium overproduction

Two examples among many….

- Decays of heavier meta-stable (100 – 1000 s) particles that inject additional neutrons (Jedamzik (2004, 2006), Kawasaki+ (2005), Ellis+ (2005))
- Existence of a mirror universe in which neutrons can oscillate to our world (Coc+ 2013) → effective late time neutron injection
Summary

- **Big-Bang Nucleosynthesis (BBN) produces**, between 3 min and 20 min, **H, D, He** and part of **Li**

- **Heavier elements nucleosynthesis is prevented** because:
 - Larger Coulomb barriers for elements with higher atomic numbers (see next Lecture)
 - Lack of isotope of mass number $A = 5$ and $A = 8$
 - Decreasing matter density as the Universe expands

Further reading…
- NPAC, cosmology course
3. Cosmic rays nucleosynthesis

Hess (center) lands after his balloon flight in 1912

Ionization as a function of altitude (Hess)
Cosmic rays properties

Composition: H (90 %), He (9 %), C, N, O, …. e- (1 %)

Cosmic rays are not in thermodynamic equilibrium → power law spectrum

Data from Voyager 1 probe (red circles), AMS-02 experiment (blue stars) and HEAO-3-C2 (green squares)
What is the origin of LiBeB isotopes?

What are the processes producing 6Li, 7Li, 9Be and 10,11B?

- **Big-Bang Nucleosynthesis**
 - significant amount of 7Li
 - 6Li, 9Be and 10,11B abundances predicted from BBN are at least 3 orders of magnitude below the abundances measured in metal-poor stars

- **Stellar nucleosynthesis**
 - Light elements are fragile enough (relatively low binding energy per nucleon) to be destroyed in stars during quiescent burning
 - 7Li in classical novae (explosive), AGB (?)
 - 7Li, 11B by ν-induced spallation reactions

- **Galactic Cosmic Rays (GCR)**
 - Similar abundances than solar system with notable exception for LiBeB!!
Spallogenic nucleosynthesis

Non thermal nucleosynthesis induced by cosmic rays

Spallation: “heavy” nucleus (C, N, O, …) emits lighter fragments (Li, Be, B, …) as a result of a collision with a high-energy particle (H, He)

Proton > 10 MeV/nucleon

Helium

C, N, O, …

LiBeB emitted at much lower energy than incident H/He

Inverse spallation: heavy nucleus impinges light nucleus

Proton > 10 MeV/nucleon

C, N, O, …

LiBeB emitted at about same energy per nucleon as incident C, N, O, …

→ must slow down to rest (small survival probability)

Cosmic rays
Spallation cross-sections

- The decreasing sequence of B, Li and Be matches the B, Li and Be GCR abundances
- $\alpha + \alpha$ reactions important for production of $^6,^7$Li isotopes
Galactic Cosmic Rays play a major role in the production of the LiBeB elements

<table>
<thead>
<tr>
<th>Element</th>
<th>BBN</th>
<th>GCR</th>
<th>v in core-collapse supernovae</th>
<th>Low-mass stars</th>
</tr>
</thead>
<tbody>
<tr>
<td>^6Li</td>
<td></td>
<td>100 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>^7Li</td>
<td>12 %</td>
<td>18 %</td>
<td>< 20 %</td>
<td>50 – 70 %</td>
</tr>
<tr>
<td>^9Be</td>
<td></td>
<td>100 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>^{10}B</td>
<td></td>
<td>100 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>^{11}B</td>
<td></td>
<td>70 %</td>
<td>30 %</td>
<td></td>
</tr>
</tbody>
</table>

Further reading...
4. Stellar nucleosynthesis

Quiescent (hydrostatic) stellar burning

Sun, Solar Dynamics Observatory

Explosive stellar burning

Classical nova, Nova Cygni 1992, HST
4.1 Quiescent hydrogen burning

- Where does it take place?
 - Core of main-sequence stars (8 – 55 MK)
 - Core of the Sun (15.6 MK)
 - Burning shell in AGB stars (45 – 100 MK)

- How does it work?
 - \(4p \rightarrow ^4\text{He} + 2e^+ + 2\nu_e\) \((Q = 26.73\ \text{MeV})\)
 - Probability for the simultaneous interaction of 4 protons far too small \(\rightarrow\) reactions sequence

- Who & when?
 - Bethe & Critchfield (1938)
 - von Weizsaecker (1938)
 - Bethe (1939)

\[\text{pp chain} \quad \text{CNO cycle}\]
The proton – proton (pp) chains

\[p + p \rightarrow d + e^+ + \nu_e \]
\[p + d \rightarrow ^3\text{He} + \gamma \]

\[^3\text{He} + ^3\text{He} \rightarrow 2p + ^4\text{He} \]

\[^3\text{He} + ^4\text{He} \rightarrow ^7\text{Be} + \gamma \]

\[^7\text{Be} + e^- \rightarrow ^7\text{Li} + \nu_e \]
\[^7\text{Li} + p \rightarrow ^4\text{He} + ^4\text{He} \]

\[^7\text{Be} + p \rightarrow ^8\text{B} + \gamma \]
\[^8\text{B} \rightarrow ^8\text{Be}^* + e^+ + \nu_e \]
\[^8\text{Be}^* \rightarrow ^4\text{He} + ^4\text{He} \]

Note: neutrinos provide direct evidence that nuclear reactions occur (see later)
The pp1 chain (1)

- Succession of 3 reactions producing almost 90% of Sun’s energy

- First reaction: \(p + p \rightarrow d + e^+ + \nu \) \((Q = 1.44 \text{ MeV})\)
 - strong + weak interactions
 - cross-section is about 20 orders of magnitude smaller than for nuclear (strong) interaction!!
 - cannot be measured
 - can be calculated

- All subsequent reactions involve nuclear and electromagnetic interactions
 - much faster

- Second reaction: \(p + d \rightarrow {}^3\text{He} + \gamma \) \((Q = 5.49 \text{ MeV})\)
 - many measurements since 1962, including one at LUNA in 2002 (see lecture 4)
• Deuterium abundance in the core of the Sun
 • Temporal evolution of deuterium = production \([p(p,e^+\nu)d]\)
 \[-\text{destruction} \,[d(p,\gamma)^3\text{He}]\]

\[
\frac{dN_d}{dt} = \frac{N_H^2}{2} \langle \sigma v \rangle_{p(p,e^+\nu)} - N_H N_d \langle \sigma v \rangle_{d(p,\gamma)}
\]

• At equilibrium:

\[
\left(\frac{N_d}{N_H} \right)_e = \frac{\langle \sigma v \rangle_{p(p,e^+\nu)}}{2 \langle \sigma v \rangle_{d(p,\gamma)}}
\]

For \(T = 15.6\) MK (Sun)

\[
\langle \sigma v \rangle_{p(p,e^+\nu)} = 1.5 \times 10^{-43} \text{cm}^3\text{s}^{-1}
\]

\[
\langle \sigma v \rangle_{d(p,\gamma)} = 2.0 \times 10^{-26} \text{cm}^3\text{s}^{-1}
\]

\[
\left(\frac{N_d}{N_H} \right)_e = 7.5 \times 10^{-18}
\]

\[
\text{Solar D/H} \approx 2 \times 10^{-5}
\]

\[\rightarrow \text{D from BBN}\]

• Lifetime of a proton and a deuterium in the core of the Sun

We consider \(\rho_c = 150\) g cm\(^{-3}\) and \(X_H \sim X_{\text{He}} \sim 0.5\) \(\rightarrow N_H = 4.5 \times 10^{25}\) cm\(^{-3}\)

\[
\tau_H = \frac{1}{N_H \langle \sigma v \rangle_{p(p,e^+\nu)}} = 4.7 \times 10^9 \text{yr}
\]

\[
\tau_d = \frac{1}{N_H \langle \sigma v \rangle_{d(p,\gamma)}} = 1.1 \text{ s}
\]
The pp1 chain (3)

Possible reactions for 3He burning

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Q (MeV)</th>
<th>$S(0)$ (keV b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3He(d,γ)5Li(p)4He</td>
<td>16.39</td>
<td>~0.3</td>
</tr>
<tr>
<td>3He(d,p)4He</td>
<td>18.35</td>
<td>6240</td>
</tr>
<tr>
<td>3He(3He,γ)6Be(2p)4He</td>
<td>11.50</td>
<td>~0.8</td>
</tr>
<tr>
<td>3He(3He,2p)4He</td>
<td>12.86</td>
<td>5320 (80)</td>
</tr>
<tr>
<td>3He(4He,γ)7Be</td>
<td>1.59</td>
<td>0.57 (4)</td>
</tr>
</tbody>
</table>

- 3He + p \rightarrow 4Li \rightarrow 3He + p \((\tau = 10^{-22} \text{ s}) \)
- 3He + d negligible given the low deuterium abundance
- 3He + 3He \rightarrow 2p + 4He \((Q = 12.86 \text{ MeV}) \) → Third reaction of the pp1 chain
 → has been measured in LUNA (see lecture 4)

- If N(4He) $>>$ N(3He) [factor $> 10^4$] then 3He(4He,γ)7Be is activated
 → pp2 & pp3 chains
The pp2 and pp3 chains

\(^7\)Be destruction: competition between electronic capture (EC) and proton capture

pp2 chain
- \(p(p,e^+\nu)d\)
- \(d(p,\gamma)^3\)He
- \(^3\)He\((^4\)He,\(\gamma)^7\)Be
- \(^7\)Be\((EC,\gamma)^7\)Li
- \(^7\)Li\((p,\alpha)\alpha\)

pp3 chain
- \(p(p,e^+\nu)d\)
- \(d(p,\gamma)^3\)He
- \(^3\)He\((^4\)He,\(\gamma)^7\)Be
- \(^7\)Be\((p,\gamma)^8\)Be
- \(^8\)B\((\beta^+\nu)^8\)Be
- \(^8\)Be\((\alpha,\alpha\)α

- \(^7\)Be decays by EC and its lifetime depends on its charge state
- In stars, \(^7\)Be fully ionized and then capture free electrons, so \(\tau\) depends on \(n_e\) and \(T\). In the Sun’s core \(\tau_s = 1.6\ \tau_{lab} = 120\) days
- The \(^7\)Be\((p,\gamma)^8\)B reaction is faster than \(^7\)Be EC for \(T > 25\) MK \(\rightarrow\) pp3 chain
Relative contribution of the 3 pp chains

- \(T < 18 \text{ MK} \) → pp1 chain
- \(18 \text{ MK} < T < 23 \text{ MK} \) → pp2 chain
- \(T > 23 \text{ MK} \) → pp3 chain
- Sun (\(T = 15.6 \text{ MK} \)) → pp1 (84 %) + pp2 (14 %)
The pp chains in the Sun

\[p + p \rightarrow d + e^+ + \nu_e [0.26 \text{ MeV}] \quad \text{99.75 \%} \]

\[p + e^- + p \rightarrow d + \nu_e [1.44 \text{ MeV}] \quad \text{0.25 \%} \]

\[p + d \rightarrow ^3\text{He} + \gamma \]

86 \% \quad 14 \%

\[^3\text{He} + ^3\text{He} \rightarrow 2p + ^4\text{He} \quad \text{pp1} \]

\[^3\text{He} + ^4\text{He} \rightarrow ^7\text{Be} + \gamma \quad \text{pp2} \]

99.89 \% \quad 0.11 \% \quad \text{pp3}

\[^7\text{Be} + e^- \rightarrow ^7\text{Li} + \nu_e [0.86 \text{ MeV}] \]

\[^7\text{Li} + p \rightarrow ^4\text{He} + ^4\text{He} \]

\[^7\text{Be} + p \rightarrow ^8\text{B} + \gamma \]

\[^8\text{B} \rightarrow ^8\text{Be}^* + e^+ + \nu_e [6.80 \text{ MeV}] \]

\[^8\text{Be}^* \rightarrow ^4\text{He} + ^4\text{He} \]

The effective energy given to the Sun is smaller than \(Q = 26.73 \text{ MeV} \) because of the escape of the neutrinos.

\[Q_{eff} = Q - 2\overline{E}_\nu(p+p) = 26.20 \text{ MeV} \quad \text{pp1} \]

\[Q_{eff} = Q - \overline{E}_\nu(p+p) - \overline{E}_\nu(7\text{Be}) = 25.61 \text{ MeV} \quad \text{pp2} \]

\[Q_{eff} = Q - \overline{E}_\nu(p+p) - \overline{E}_\nu(8\text{B}) = 19.67 \text{ MeV} \quad \text{pp3} \]
The CNO cycle (1)

- In population I stars (second, third… generation of stars), the elements C, N and O serve as catalysts of the transformation:

\[4p \rightarrow ^4\text{He} + 2e^+ + 2\nu_e \quad (Q = 26.73 \text{ MeV})\]

- There are four sets of reactions converting H to He → 4 CNO cycles → we will focus on the CNO-1 cycle

CNO-1

\[\begin{align*}
12\text{C}(p,\gamma)^{13}\text{N} \\
13\text{N}(\beta^+\nu)^{13}\text{C} \\
13\text{C}(p,\gamma)^{14}\text{N} \\
14\text{N}(p,\gamma)^{15}\text{O} \\
15\text{O}(\beta^+\nu)^{15}\text{N} \\
15\text{N}(p,\alpha)^{12}\text{C}
\end{align*}\]

\[\begin{align*}
^1\text{H} & \rightarrow ^4\text{He} & \rightarrow ^{13}\text{N} & \rightarrow ^{13}\text{C} & \rightarrow ^{14}\text{N} & \rightarrow ^{15}\text{O} & \rightarrow ^{15}\text{N} & \rightarrow ^{12}\text{C} \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
\end{align*}\]

\[T_{1/2}^{(13}\text{N}) = 9.965 \text{ min} \\
T_{1/2}^{(15}\text{O}) = 122.24 \text{ s} \\
T_{1/2}^{(17}\text{F}) = 64.49 \text{ s} \\
T_{1/2}^{(18}\text{F}) = 109.77 \text{ min} \]
The CNO cycle (2)

- The slowest reaction $^{14}\text{N}(p,\gamma)^{15}\text{O}$ of the CNO cycle fixes:
 - the energy production rate $\epsilon \propto Q_{\text{CNO}}/\tau_{\text{CNO}}$
 - the cycle duration
 - $\tau_{\text{CNO}} = \tau_p(^{12}\text{C}) + \tau_p(^{13}\text{C}) + \tau_p(^{14}\text{N}) + \tau_p(^{15}\text{N})$
 $\simeq \tau_p(^{14}\text{N})$

 - For $\rho_c = 100 \text{ g.cm}^{-3}$, $X_H = 0.5$ and $T_c = 60 \text{ MK}$
 $\rightarrow \tau(^{12}\text{C}) = 6.1 \times 10^9 \text{ yr}$, $\tau(^{13}\text{C}) = 1.1 \times 10^9 \text{ yr}$,
 $\tau(^{14}\text{N}) = 2.1 \times 10^{12} \text{ yr}$, $\tau(^{15}\text{N}) = 1.0 \times 10^8 \text{ yr}$

- The $^{14}\text{N}(p,\gamma)^{15}\text{O}$ reaction has been measured directly by the LUNA collaboration (see lecture 4)
 - impact on the age of Globular Clusters (turn-off age; see lecture 1)
 \cite{Imbriani+ A&A 2013}

- CNO cycle in AGB stars is the main source of ^{13}C and ^{14}N in the Universe

Hydrogen burning
The CNO cycle (3)

- CNO cycle has a steeper temperature dependence than pp chain (see lecture 3)
- pp1 chain dominates in low mass stars (~ M_\odot), while CNO cycles dominates for higher mass stars (few M_\odot)
- Above $T = 20$ MK, CNO1 faster than pp1
 \[\epsilon \sim T^{17} \]
 \[\epsilon \sim T^4 \]
 → change in stellar structure at $1.15 M_\odot$, e.g. different radiative / convective zones

Hydrogen burning
The solar neutrino spectrum

Solar neutrinos
The detection of solar neutrinos (1)

The pioneering experiment (1964-2001) of R. Davis (Nobel price in 2002) and J. Bahcall

- 680 tons of perchloroethylene (C\textsubscript{2}Cl\textsubscript{4}) in the Homestake gold mine (1.5 km deep)

- $\nu_e + ^{37}\text{Cl} \rightarrow ^{37}\text{Ar} \ (T_{1/2} = 35 \text{ days}) + e^-$

- Production of $^\text{37}\text{Ar}$: ~ 0.5 atom per day

- Radiochemical separation: extraction of the $^\text{37}\text{Ar}$ nuclei every 100 days, counting (EC \rightarrow Auger electrons) in a gas detector

- Result: $2.56 \pm 0.16 \text{ (stat)} \pm 0.16 \text{ (sys)} \text{ SNU} \Rightarrow 30 \% \text{ of the expected signal}$

- Solar model (Bahcall 2004): $8.5 \pm 0.18 \text{ SNU}$

1 SNU (Solar Neutrino Unit) = 10^{-36} capture per second and target atom
The detection of solar neutrinos (2)

- **Radiochemical experiments** with gallium: **SAGE and GALLEX**
 - Reaction: $\nu_e + ^{71}\text{Ga} \rightarrow ^{71}\text{Ge} \left(T_{1/2} = 11.4 \text{ d} \right) + e^- \text{ (threshold } E_\nu = 0.23 \text{ MeV)}$
 - \rightarrow sensitive to pp neutrinos
 - **Results**: 40 % of the expected signal

- **Real-time detection of (mostly) e- neutrinos**: **Kamiokande** (700 tons of water, 1983 – 1996), **Super-Kamiokande** (50 kt, 1996 –)
 - Reaction: $\nu_e + e^- \rightarrow \nu_e + e^-$ (emission of Cherenkov light)
 - **Results**: 40 % of the expected signal
Solution to the solar neutrino problem

Possible origin of the deficit

- Problem with the standard solar model? (3% of error on $T_c \rightarrow$ a factor of 2 in N_v)
- Problem with the nuclear data? $^7\text{Be}(p,\gamma)^8\text{B}$ cross-section
- New physics of neutrino \rightarrow oscillation $\nu_e \rightarrow \nu_\mu, \nu_\tau$?

SNO: Sudbury Neutrino Observatory

- 1100 tons of D_2O (99.9%)
- Sensitive to the three neutrino flavors
 $\rightarrow \nu_x + d \rightarrow p + n + \nu_x$ (neutral current)

(Bellerive+, NPB, 2016)

- Results: $\phi_{\text{NC}} = 5.21 \pm 0.27$ (stat) ± 0.39 (sys) SNU
 in agreement with $\phi_{\text{SSM}} = 5.05^{+1.01}_{-0.81}$ SNU
4.2 Quiescent helium burning

- Where does it take place?
 - Core of horizontal branch stars (100 – 400 MK)
 - Burning shell in AGB stars (45 – 100 MK)

- Main nucleosynthesis products
 - 4He transformed in 12C and 16O for stars of more than $\sim 0.5 \, M_\odot$

- How does it work?
 - Mainly three reactions:
 - $\alpha + \alpha + \alpha \rightarrow ^{12}\text{C} \quad Q = 7.3 \, \text{MeV}$
 - $^{12}\text{C}(\alpha,\gamma)^{16}\text{O} \quad Q = 7.2 \, \text{MeV}$
 - $^{16}\text{O}(\alpha,\gamma)^{20}\text{Ne} \quad Q = 4.7 \, \text{MeV}$

- Who & when?
 - Triple alpha process: Öpik (1951), Salpeter (1952)
 - The “Hoyle” state in 12C: Hoyle (1953)
The triple alpha process

How are synthesized elements heavier than ^4He, given that there are no stable isotopes for mass $A = 5$ ($p+\alpha$) and $A = 8$ ($\alpha+\alpha$)?

- Fusion of 3α in ^{12}C in two steps
 - $\alpha + \alpha \leftrightarrow ^8\text{Be} \quad Q = -92 \text{ keV}$
 (^8Be is unstable $\tau = 9.7 \times 10^{-17} \text{ s}$)
 - $\alpha + ^8\text{Be} \rightarrow ^{12}\text{C}^*$

- In view of the significant abundance of ^{12}C in the Universe (!), Hoyle (1953) predicted (i) that the reaction $\alpha + ^8\text{Be} \rightarrow ^{12}\text{C}^*$ is resonant and, (ii) the existence of a $J^\pi = 0^+$ state at 7.7 MeV in ^{12}C

- Experimental verification in 1953 and 1957

Helium burning
The $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$ reaction

Slow and crucial reaction → Holy Grail in nuclear astrophysics

- The rate of this reaction determines the $^{12}\text{C}/^{16}\text{O}$ ratio at the end of the helium burning phase, and thus the subsequent burning stages in massive stars.

- $^{12}\text{C}/^{16}\text{O}$ influences the nature of the remnant (neutron star? Black hole?) left after a core-collapse supernova.

- A difficult case: contribution from a broad state, two sub-threshold resonances and the direct capture process.

- Cross-section at 300 keV

 $\sigma \approx 10^{-17}$ b! (can’t be measured, less than 1 event per year)
The $^{16}\text{O}(\alpha,\gamma)^{20}\text{Ne}$ reaction

- Very slow reaction because no resonant state in the energy range of interest $5.0 \text{ MeV} < E_x^{(20}\text{Ne}) < 5.2 \text{ MeV}$ (the $J^\pi = 2^-$ state at $E_x = 4967 \text{ keV}$ being of non-natural parity)

- Reaction rate $<<$ rate of $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$ for $T < 0.3 \text{ GK}$
 \Rightarrow end of the helium burning phase in stellar cores
 \Rightarrow survival of ^{16}O
How insignificant we are!

\[Q(2\alpha \rightarrow ^8\text{Be}) = -92 \text{ keV} \]
\[\Rightarrow \text{sufficient } ^8\text{Be} \text{ nuclei at equilibrium} \]

\[J^\pi = 0^+, E_x = 7.65 \text{ MeV} \]
\[\text{state of } ^{12}\text{C} \]
\[\Rightarrow \text{“creation” of } ^{12}\text{C} \]

\[\text{Sub-threshold } 1^- \text{ and } 2^+ \text{ states in } ^{12}\text{C} + \alpha \rightarrow ^{16}\text{O} \]
\[\Rightarrow \text{“creation” of } ^{16}\text{O} \text{ but survival of } ^{12}\text{C} \]

\[^{20}\text{Ne state at 4.97 MeV of non-natural parity (2\text{'})} \]
\[\Rightarrow \text{survival of } ^{16}\text{O} \]
Other reactions

- ^{14}N is the main “ash” from the CNO cycle, and accounts for 1-2% of the mass of the fusion core at the end of H burning (pop I stars)

 $\rightarrow ^{14}\text{N}(\alpha,\gamma)^{18}\text{F}(\beta^+\nu)^{18}\text{O}(\alpha,\gamma)^{22}\text{Ne}$

 followed by

 $\rightarrow ^{22}\text{Ne}(\alpha,n)^{25}\text{Mg}$ [= main source of neutrons of the weak s-process (“slow” neutron capture)]

- Helium burning is the main source of ^{12}C, ^{16}O, ^{18}O and ^{22}Ne in the Universe

Helium burning
4.3 Advanced nuclear burning phases

Schematic diagram of the “onion-skin” structure of a pre-supernova

Chandra X-ray observatory image of the SN remnant Cassiopeia A
Carbon burning

• When?
 • He exhausted in the stellar core → mainly ^{12}C and ^{16}O ashes → gravitational contraction → increase of temperature
 • $T_c \sim (5 – 9) \times 10^8$ K and $\rho > 2 \times 10^5$ g cm$^{-3}$ for $M \geq 8 M_\odot$

• Major reaction sequences
 $$^{12}\text{C} + ^{12}\text{C} \rightarrow ^{20}\text{Ne} + \alpha \quad (Q = 4.62 \text{ MeV})$$
 dominates by far
 $$\rightarrow ^{23}\text{Na} + \text{p} \quad (Q = 2.24 \text{ MeV})$$
 $$\rightarrow ^{23}\text{Mg} + \text{n} \quad (Q = -2.62 \text{ MeV})$$
 + several secondary reactions..

• Composition at the end of core carbon burning
 • Mainly ^{20}Ne with some $^{21,22}\text{Ne}$, ^{23}Na, $^{24,25,26}\text{Mg}$ and $^{26,27}\text{Al}$
 • ^{16}O not burning yet…. → amount comparable with ^{20}Ne
Neon burning

- When?
 - After carbon burning → mainly ^{20}Ne ashes → the core further contracts → increase of temperature
 - $T_c \sim (1 - 2) \times 10^9 \text{ K}$ and $\rho \sim 10^6 \text{ g cm}^{-3}$ for $M \geq 11 M_\odot$

- Major reaction sequences
 - Temperatures are high enough to initiate photodisintegration processes
 \[
 \gamma + ^{20}\text{Ne} \rightarrow ^{16}\text{O} + \alpha \quad (Q = -4.73 \text{ MeV})
 \]
 \[
 ^{16}\text{O} + \alpha \rightarrow ^{20}\text{Ne} + \gamma
 \]
 - Followed by e.g. the $^{20}\text{Ne}(\alpha,\gamma)^{24}\text{Mg}(\alpha,\gamma)^{28}\text{Si}$ sequence

- Composition at the end of core neon burning
 - Mainly ^{16}O with some ^{24}Mg and ^{28}Si
Oxygen burning

- **When?**
 - After neon burning the core further contracts
 - \(T_c \sim (2 – 3) \times 10^9 \text{ K} \) and \(\rho \sim 3 \times 10^6 \text{ g cm}^{-3} \) for \(M \geq 11 \text{ M}_\odot \)

- **Major reaction sequences**

 \[
 ^{16}\text{O} + ^{16}\text{O} \rightarrow ^{32}\text{S}^* \rightarrow ^{31}\text{S} + n \quad (Q = 1.45 \text{ MeV}) \\
 \rightarrow ^{31}\text{P} + p \quad (Q = 7.68 \text{ MeV}) \\
 \rightarrow ^{30}\text{P} + d \quad (Q = -2.41 \text{ MeV}) \\
 \rightarrow ^{28}\text{Si} + \alpha \quad (Q = -2.41 \text{ MeV})
 \]

 + recapture of n, p, d and \(\alpha \)-particles

- **Composition at the end of oxygen burning**
 - The most abundant nuclides are \(^{28}\text{Si} \) and \(^{32}\text{S} \)
Silicon burning

• When?
 • After oxygen burning the core further contracts and the temperature increases
 • \(T_c \sim (2.8 - 4.1) \times 10^9 \) K and \(\rho \sim 3 \times 10^7 \) g cm\(^{-3}\) for \(M \geq 11 \) M\(_\odot\)

• Photodisintegration
 • Starts with \(^{28}\)Si: \(^{28}\)Si(\(\gamma,\alpha\))\(^{24}\)Mg(\(\gamma,\alpha\))\(^{20}\)Ne(\(\gamma,\alpha\))…
 • Photodisintegration rearrangement: destruction of less tightly bound species and capture of released \(n, p, \alpha\)-particles to synthesize more tightly bound species

• Nuclear Statistical Equilibrium (NSE) is achieved for many reactions
 • NSE = both photodisintegration and capture rates are fast

\[
\begin{align*}
\gamma + (Z, N) & \rightleftharpoons p + (Z - 1, N) \\
\gamma + (Z, N) & \rightleftharpoons n + (Z, N - 1) \\
\gamma + (Z, N) & \rightleftharpoons \alpha + (Z - 2, N - 2)
\end{align*}
\]

• Equilibrium drives towards \(A = 56 \rightarrow \) most stable nuclide (higher binding energy)

• Synthesis of nuclei from Si to Zn ("iron peak" elements Ti to Zn)
• Composition at the end of silicon burning: \(^{56}\)Fe \rightarrow formation of an iron core
Summary

<table>
<thead>
<tr>
<th>Stellar mass (M_☉)</th>
<th>Stage reached</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.08</td>
<td>no thermonuclear fusion</td>
</tr>
<tr>
<td>0.1 - 0.5</td>
<td>H burning</td>
</tr>
<tr>
<td>0.5 - 8</td>
<td>He burning</td>
</tr>
<tr>
<td>8 - 11</td>
<td>C burning</td>
</tr>
<tr>
<td>> 11</td>
<td>all stages</td>
</tr>
</tbody>
</table>

Evolution stages of a 25 M_☉ star

<table>
<thead>
<tr>
<th>Stage reached</th>
<th>Timescale</th>
<th>T_{core} (10^9 K)</th>
<th>Density (g cm^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>H burning</td>
<td>7x10^6 y</td>
<td>0.06</td>
<td>5</td>
</tr>
<tr>
<td>He burning</td>
<td>5x10^5 y</td>
<td>0.23</td>
<td>7x10^2</td>
</tr>
<tr>
<td>C/O burning</td>
<td>600 y / 6 months</td>
<td>0.93 – 2.3</td>
<td>2x10^5 – 1x10^7</td>
</tr>
<tr>
<td>Si melting</td>
<td>1 d</td>
<td>4.1</td>
<td>3x10^7</td>
</tr>
<tr>
<td>Explosive burning</td>
<td>0.1 – 1 s</td>
<td>1.2 - 7</td>
<td>varies</td>
</tr>
</tbody>
</table>
4.4 Explosive nucleosynthesis

Massive stars

Binary systems

Type Ia supernova

G299 (Chandra X-ray observatory)

Classical nova

Nova Cygni 1992 (HST)
“Onion shell” structure of massive stars

Explosion:
- Core in NSE, grows in mass until $\sim 1.4 M_\odot$
- Collapse enhanced by photodisintegration ($\gamma + ^{56}{\text{Fe}} \rightarrow ^{13}{\text{He}} + 4n$) and electron capture ($e^- + (Z,N) \rightarrow \nu_e + (Z-1,N+1)$)
- Inner part of core rebounds \rightarrow outward moving shock

Nucleosynthesis induced by neutrinos and outward moving shock (mainly in Si, O and Ne/C layers)
Core collapse supernova (2)

Light curve powered by radioactive decay

\[
\begin{align*}
M^{(44}\text{Ti}) &= 3.80 \times 10^{-5} M_\odot \\
M^{(55}\text{Co}) &= 1.30 \times 10^{-4} M_\odot \\
M^{(56}\text{Ni}) &= 6.90 \times 10^{-2} M_\odot \\
M^{(57}\text{Ni}) &= 2.43 \times 10^{-3} M_\odot \\
M^{(60}\text{Co}) &= 4.00 \times 10^{-5} M_\odot
\end{align*}
\]

\[\text{SN 1987A}\]

- \(\text{Ni}^{56} \rightarrow \text{Co}^{56} \rightarrow \text{Fe}^{56}\) (stable)
 - \((T_{1/2} = 6.1 \text{ d})\)
 - \((T_{1/2} = 77.3 \text{ d})\)

- \(\text{Ti}^{44} \rightarrow \text{Sc}^{44} \rightarrow \text{Ca}^{44}\) (stable)
 - \((T_{1/2} = 60 \text{ yr})\)
 - \((T_{1/2} = 3.97 \text{ h})\)

\[\text{Cas A}\]

\[\text{SN 1987A}\]
Classical novae (1)

Sudden increase in star’s luminosity \((L \sim 10^4 – 10^6 \, L_i, \text{ and } t \sim 1\,\text{h} – 1\,\text{d})\)

Final evolution of a close binary system

- **H-rich material transfer** from normal star to white dwarf (WD)
- **\(T\) and \(\rho\) increase** at surface of WD
- **Start and thermonuclear runaway** \((T \approx 50 – 300 \, \text{MK})\)
 - \(\rightarrow\) cataclysmic explosion
- **Ejection** of part of the accreted material

<table>
<thead>
<tr>
<th></th>
<th>novae</th>
<th>ccSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_{\text{ej}} (M_\odot))</td>
<td>(\sim 10^{-5})</td>
<td>(\sim 10)</td>
</tr>
<tr>
<td>(f , (\text{yr}^{-1} , \text{galaxy}^{-1}))</td>
<td>(\sim 30)</td>
<td>(\sim 10^{-2})</td>
</tr>
<tr>
<td>(L , (L_\odot))</td>
<td>(\sim 10^5)</td>
<td>(\sim 10^{11})</td>
</tr>
<tr>
<td>Nucleosynthesis</td>
<td>(^{13}\text{C}, , ^{15}\text{N}, , ^{17}\text{O})</td>
<td>(~ \text{all})</td>
</tr>
</tbody>
</table>
Shell ejection
The energy release from the β^+-decays (13N, 14O, 15O, 17F) throughout the envelope helps to eject the material from the WD

End-point of nucleosynthesis: $A \sim 40$ (Ca)
- $T_{peak} \sim 300 – 400$ MK
- (p,γ) reactions on the proton-rich side
- Coulomb barrier too high to overcome for $A \geq 40$

Nucleosynthesis of γ-ray emitters
- 18F ($T_{1/2} = 110$ min); 511 keV
- 22Na ($T_{1/2} = 2.6$ yr); 1275 keV
- 26Al ($T_{1/2} = 0.7$ Myr); 1809 keV
4.5 Nucleosynthesis beyond iron

Elements heavier than iron can’t be synthesized by fusion reactions.
Neutron capture reactions

- Radiative neutron captures \([n,\gamma]\) reactions in competition with \(\beta^–\) decay
- Processus starts with Fe seeds

![Diagram showing neutron capture processes]

- Mean lifetime for neutron capture \(\tau_n = \frac{1}{N_n \langle \sigma v \rangle}\) to be compared to \(\beta^–\)-decay lifetime \(\tau_\beta\) (from seconds to years)
- If \(\tau_n > \tau_\beta\) → unstable nuclide decays
- If \(\tau_n < \tau_\beta\) → neutron capture

s-process: “slow”
r-process: “rapid”
- **Slow neutron capture process**
 - Unstable nucleus decays *before* capturing another neutron
 - $\tau_n \gg \tau_\beta \iff N_n \sim 10^8 \text{ n/cm}^3$

- **Nucleosynthesis**: path along the valley of β^- stability up to ^{209}Bi (long time scale $\sim 10^4$ yr)
- **Neutron source**: $^{13}\text{C}(\alpha,n)^{16}\text{O}$ and/or $^{22}\text{Ne}(\alpha,n)^{25}\text{Mg}$
- **Quiescent scenarios**:
 - *AGB stars*: main s-process; “Ba/Pb” peaks
 - *Massive stars*: weak s-process; “Sr-Y” peak

![Diagram of the s-process with elements and nuclear reactions.](attachment:image.png)
- Rapid neutron capture process
 - Unstable nucleus captures neutron before decaying
- $\tau_n < < \tau_\beta \iff N_n >> 10^{22} \text{ n/cm}^3$

- Nucleosynthesis: path far from the valley of β^- stability (short time scale \sim seconds)
- Explosive scenarios: but where?
Astrophysical site for r-process?

Core-collapse Supernovae?

- Dynamical ejcta of prompt explosions (of O-Ne-Mg cores)
- Neutrino-driven wind from proto-neutron stars
- ...

Supernova SN1987A

Neutron star merger?

- Mergers are expected to eject $\sim 0.01 \, M_\odot$ of very neutron-rich material
- Sources of gravitational waves
- Electromagnetic emission from radioactive decay of r-process nuclei \rightarrow kilonova

Neutron captures
Neutron star merger GW170817

- Gravitational waves from neutron star merger detected by LIGO/VIRGO

Two neutron stars of $0.86 \, M_\odot$ and $2.26 \, M_\odot$

- Optical transient source counterpart SSS17a (Swope Supernova Survey)

Counterpart in galaxy NGC4993 at $\sim 40 \, \text{Mpc}$

- First day
 - blue and bright

- Four days later
 - red and fainter

Neutron captures
Near-infrared emission

Comparison of the measured near-infrared spectrum counterpart of the binary neutron star merger GW170817 with a “red” kilonova model

- The two bumps in the near infrared spectrum is a signature of very heavy elements
- Effect of opacity induced by lanthanide elements
- Lanthanides (~ 1%)
 → \(r \)-process
5. Back to the HR diagram

Main sequence star:
H \rightarrow He core burning via the pp chains

Horizontal branch star:
He \rightarrow C, O core burning + H \rightarrow He shell burning

Red giant star:
H \rightarrow He shell burning via the CNO cycle

Globular cluster M10
Red giant stars (1)

- Stars of mass $0.5 - 10 \, M_\odot$ (if $M \geq 10 \, M_\odot \rightarrow$ red supergiants)
- Inert He core (no energy source) surrounded by a H burning shell

From the Virial theorem

$$E = K + \Omega = \Omega/2 = -K$$

If $E \sim \text{cst}$, Ω and K also

\rightarrow contraction of the core must be accompanied by expansion of the envelope ($\Omega \sim \text{cte}$) up to $50 \, R_\odot$ (\sim Mercury)

\rightarrow core heating must result in cooling of the envelope ($K \sim \text{cte}$) $\rightarrow T_{\text{eff}}$ decreases

$\rightarrow L = 4\pi R^2 \sigma_s T_{\text{eff}}^4$ increases

Back to HR
Red giant stars (2)

- Decrease of T_{eff} → recombination in stellar atmosphere → increase of opacity → radiative transport less efficient → convection settles in envelope
- Ashes of H-shell burning – 13C, 14N – are transported to the surface → first “dredge-up”
 → high 13C/12C and 14N/12C isotopic ratios observed in absorption spectra of red giant stars

Back to HR
Stars of the horizontal branch (1)

Ignition of the He core at $T_c \sim 100$ MK → core contraction stops

- In low-mass stars ($0.7 - 2 M_\odot$) the electron gas in the core is partially degenerated → helium flash

 → release during a few seconds of $10^{10} L_\odot$ in L_{nuc}! but invisible from the surface

 → expansion and cooling of the core result in the contraction and heating of the envelope

Back to HR
Stars of the horizontal branch (2)

- **Quiet ignition** of the He core (convective) for intermediate-mass stars ($2 - 10 \, M_\odot$)

Ignition of the He core at $T_c \sim 100 \, \text{MK} \rightarrow$ core contraction stops
AGB stars

- Asymptotic Giant Branch (AGB); E-AGB = early AGB
- Inert C/O core (no energy source) left after He core burning
- He burning shell + H burning shell
- Convective envelope → second “dredge-up” (H-burning ashes are brought to the surface by convection)

- As for red giant phase, radius is increasing..... up to $200 \, R_\odot$ (~ Earth)!

![Diagram showing layers of AGB star, with layers labeled H → He, He shell, He → C+O, C+O core, and Convective envelope.]
TP-AGB stars (Thermal Pulses)

- Mixing of ashes from H and He burning
- Site of the main s-process
Evolution of a solar-type star

<table>
<thead>
<tr>
<th>Time until the next stage (year)</th>
<th>T_c (MK)</th>
<th>T_{eff} (K)</th>
<th>ρ_c (g cm$^{-3}$)</th>
<th>Radius (R_\odot)</th>
<th>Stellar stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{10}</td>
<td>15</td>
<td>6000</td>
<td>10^2</td>
<td>1</td>
<td>Main sequence</td>
</tr>
<tr>
<td>10^8</td>
<td>50</td>
<td>4000</td>
<td>10^4</td>
<td>3</td>
<td>Subgiant</td>
</tr>
<tr>
<td>10^5</td>
<td>100</td>
<td>4000</td>
<td>10^5</td>
<td>50</td>
<td>Helium flash</td>
</tr>
<tr>
<td>5×10^7</td>
<td>200</td>
<td>5000</td>
<td>10^4</td>
<td>10</td>
<td>Horizontal branch</td>
</tr>
<tr>
<td>10^4</td>
<td>250</td>
<td>4000</td>
<td>10^5</td>
<td>200</td>
<td>AGB</td>
</tr>
<tr>
<td>10^5</td>
<td>300</td>
<td>100 000</td>
<td>10^7</td>
<td>0.01</td>
<td>Compact star enriched in C, O (planetary nebula)</td>
</tr>
<tr>
<td>-</td>
<td>100</td>
<td>50 000</td>
<td>10^7</td>
<td>0.01</td>
<td>White dwarf</td>
</tr>
</tbody>
</table>
Summary
Abundance curve and processes

- Big Bang nucleosynthesis
 - Fusion reactions (exothermic)
 - Neutron-capture reactions (s-, r-process)
- Stellar nucleosynthesis
- Cosmic-ray produced

Solar abundance ($^{28}\text{Si} = 10^6$)

Mass number $A = Z + N$
Nuclear landscape and astrophysical processes

- Neutron number
- Proton number

- BBN
- Classical novae
- Fusion
- X-ray bursts: αp, rp-process
- Classical novae
- Cosmic-rays

- p-process
- s-process
- r-process

Known nuclides ~ 3760
- Stable ~ 255
- Unstable ~ 3505
Bibliography

- Nuclear Physics of Stars
 Christian Iliadis, Wiley-VCH Verlag GmbH & Co. KGaA, 2015
 ISBN 978-3-527-33648-7